Hemocompatibility of Chitosan/poly(acrylic acid) Grafted Polyurethane Tubing.
نویسندگان
چکیده
The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tubes upon exposure to saline solution for 7 days. Using quartz-crystal microbalances with dissipation (QCM-D), in-situ adsorption of blood plasma proteins on CH and CH-Q compared to a silicon oxide control was measured. The QCM-D results showed that the physically adsorbed plasma protein layer on CH-Q and CH surfaces is softer and more viscous than the protein layer on the SiO2 surface. The CH-Q layer thus has the weakest interaction with plasma proteins. Whole blood and platelet adhesion was reduced by ~92% on CH-Q, which showed the weakest interaction with plasma protein but more viscous adsorbed plasma protein layer, compared to SiO2. Last, to examine the biologic response of platelets and neutrophils to biomaterial surfaces, CH (CH-Q)/PAA, PAA and PU tubes were tested using a Chandler Loop apparatus as an ex vivo model and flow cytometry. The blood adhesion and biologic response results showed that CH and CH-Q reduced adhesion and activation of platelets and neutrophils and improved hemocompatibility relative to other surfaces (PU and PAA). Our studies demonstrated that the properties of physically adsorbed plasma protein layer on biomaterial surfaces correlates with blood coagulation on biomaterial surfaces.
منابع مشابه
Plasma induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) monofilament
The graft polymerization of acrylic acid has been carried out on poly(ethylene terephthalate) (PET) monofilament to introduce carboxylic acid groups. The filament is treated with oxygen plasma for the introduction of peroxides and subsequently grafted with acrylic acid. The influence of monomer concentration, plasma exposure time and reaction temperature on the degree of grafting has been inves...
متن کاملIncorporated Poly Acrylic Acid-co-Fe3O4 Nanoparticles Mixed Matrix Polyethersulfone based Nanofiltration Membrane in Desalination Process
Polyethersulfone (PES) based nanocomposite nanofiltration membrane was prepared by immersion precipitation method and casting solution technique using poly (acrylic acid) grafted-iron oxide nanoparticles (Fe3O4) as hydrophilic filler additives. For this purpose, iron oxide nanoparticles were modified by in situ polymerization of acrylic acid in aqueous solution by potassium persulfate as initi...
متن کاملMagnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin
Objective(s): Researchers have intended to reformulate drugs so that they may be more safely used in human body. Polymer science and nanotechnology have great roles in this field. The aim of this paper is to introduce an efficient drug delivery vehicle which can perform both targeted and controlled antibiotic release using magnetic nanoparticles grafted pH-responsive polymer.<s...
متن کاملPoly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone coated Magnetic nanoparticles as a pH-responsive magnetic Nano-carrier for controlled delivery of antibiotics
Objective(s): Pharmaceutical industries are leading to improved medications that can target diseases more effectively and precisely. Researchers have intended to reformulate drugs so that they may be more safely used in human body. The more targeted a drug is, the lower its chance of triggering drug resistance, a cautionary concern surrounding the use of broad-spectrum antibiotics. The aim of t...
متن کاملPreparation and Evaluation of Chitosan-Poly (Acrylic Acid) Hydrogels as Stomach Specific Delivery for Amoxicillin and Metronidazole
The objective of the present work was to develop stomach specific delivery systems for am xicillin and metronidazole using chitosan and poly(acrylic acid) hydrogels. Chitosan and poly(acrylic acid) hydrogels were prepared with different composition of copolymers. The hydrogels were evaluated for swelling studies, mucoadhesive studies, in vitro drug release, scanning electron microscopic and FTI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of materials chemistry. B
دوره 1 46 شماره
صفحات -
تاریخ انتشار 2013